Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution.

نویسندگان

  • Patrick M Hare
  • Carlos E Crespo-Hernández
  • Bern Kohler
چکیده

The femtosecond transient absorption technique was used to study the relaxation of excited electronic states created by absorption of 267-nm light in all of the naturally occurring pyrimidine DNA and RNA bases in aqueous solution. The results reveal a surprising bifurcation of the initial excited-state population in <1 ps to two nonradiative decay channels within the manifold of singlet states. The first is the subpicosecond internal conversion channel first characterized in 2000. The second channel involves passage through a dark intermediate state assigned to a lowest-energy (1)npi* state. Approximately 10-50% of all photoexcited pyrimidine bases decay via the (1)npi* state, which has a lifetime of 10-150 ps. Three- to 6-fold-longer lifetimes are seen for pyrimidine nucleotides and nucleosides than for the corresponding free bases, revealing an unprecedented effect of ribosyl substitution on electronic energy relaxation. A small fraction of the (1)npi* population is proposed to undergo intersystem crossing to the lowest triplet state in competition with vibrational cooling, explaining the higher triplet yields observed for pyrimidine versus purine bases at room temperature. Some simple correlations exist between yields of the (1)npi* state and yields of some pyrimidine photoproducts, but more work is needed before the photochemical consequences of this state can be definitively determined. These findings lead to a dramatically different picture of electronic energy relaxation in single pyrimidine bases with important ramifications for understanding DNA photostability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the origin of the ultrafast internal conversion of electronically excited pyrimidine bases.

The ultrafast radiationless decay of photoexcited uracil and cytosine has been investigated by ab initio quantum chemical methods based on CIS and CR-EOM-CCSD(T) electronic energy calculations at optimized CIS geometries. The calculated potential energy profiles indicate that the S(1) --> S(0) internal conversion of the pyrimidine bases occurs through a barrierless state switch from the initial...

متن کامل

Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases.

A comprehensive effort in photodynamical ab initio simulations of the ultrafast deactivation pathways for all five nucleobases adenine, guanine, cytosine, thymine, and uracil is reported. These simulations are based on a complete nonadiabatic surface-hopping approach using extended multiconfigurational wave functions. Even though all five nucleobases share the basic internal conversion mechanis...

متن کامل

Ultrafast branching of reaction pathways in 2-(2'-hydroxyphenyl)benzothiazole in polar acetonitrile solution.

In a combined study on the photophysics of 2-(2'-hydroxyphenyl)-benzothiazole (HBT) in polar acetonitrile utilizing ultrafast infrared spectroscopy and quantum chemical calculations, we show that a branching of reaction pathways occurs on femtosecond time scales. Apart from the excited-state intramolecular hydrogen transfer (ESIHT) converting electronically excited enol tautomer into the keto t...

متن کامل

Ultrafast non-radiative decay of gas-phase nucleosides.

The ultrafast photo-physical properties of DNA are crucial in providing a stable basis for life. Although the DNA bases efficiently absorb ultraviolet (UV) radiation, this energy can be dissipated to the surrounding environment by the rapid conversion of electronic energy to vibrational energy within about a picosecond. The intrinsic nature of this internal conversion process has previously bee...

متن کامل

Photochemistry of Fe(III) and sulfosalicylic acid aqueous solutions

Femtosecond and nanosecond laser flash photolysis was used to determine the photophysical and photochemical processes in aqueous solutions of Fe(III) ion and 5-sulfosalicylic acid (SSA) containing the FeSSA complex and the free ligand. Excitation of the FeSSA complex in the charge transfer band (λmax = 505 nm) is followed by an ultrafast relaxation to the ground electronic state with two charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 2007